

JPEG AI Standard: Learning an Efficient and Rich Visual Data Representation

João Ascenso

Instituto de Telecomunicações - Instituto Superior Técnico, University of Lisbon

Outline

- 1. Context and Motivation
- 2. The JPEG AI Project
- 3. JPEG AI Verification Model
- 4. Performance Evaluation
- 5. Going Forward ...

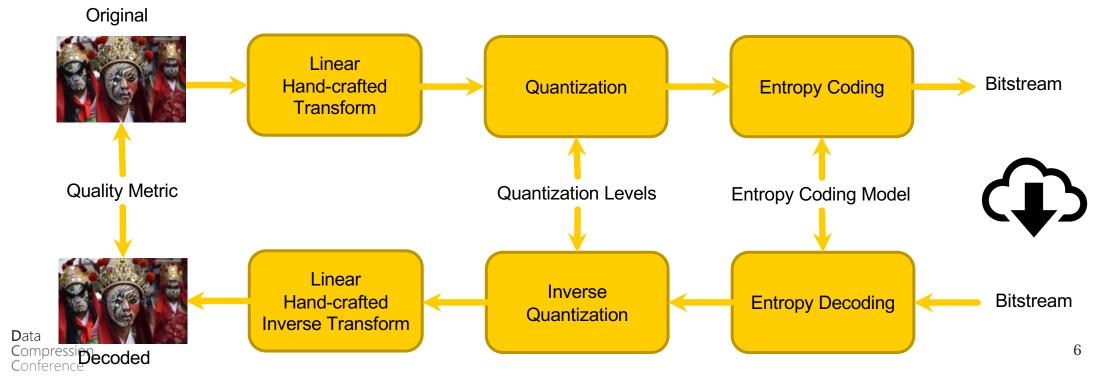
Context and Motivation

Rich Ecosystem of Image Technologies

Image Compression Landscape

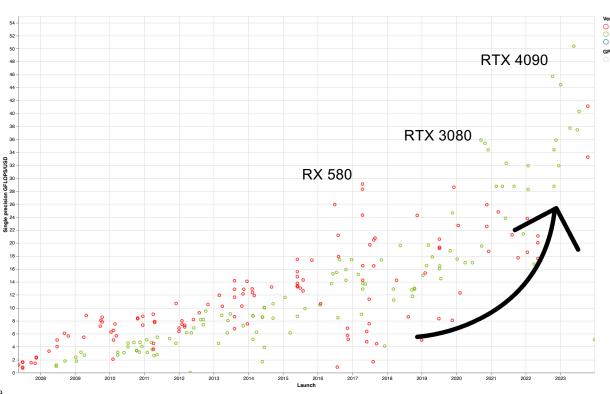
GIF

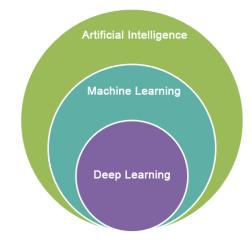
PNG


Data Compression Conference

Classical Image Compression Pipeline

JPEG: simple, elegant, large ecosystem, interpretable, ...





Deep Learning Explosion!

Giga FLoating-point Operations Per Second that you can buy with 1 USD

I. Big Data

- Larger Datasets
- Easier
 Collection &
 Storage

IM GENET

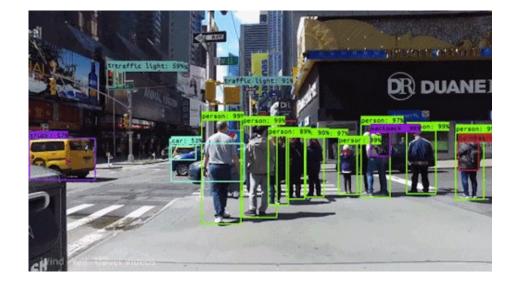
2. Hardware

- Graphics Processing Units (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

Data Compression Conference


Deep Learning Achievements: Computer Vision

- Extremely successful in computer vision tasks:
 - ✓ Image classification, object detection, semantic segmentation, ...
 - ✓ Face recognition, image generation, video understanding, ...

Image classification

Data Compression

8

Deep Learning Achievements: Image Processing

- Extremely successful in image processing tasks:
 - ✓ Denoising, super-resolution, inpainting, style transfer, segmentation, ...
 - ✓ Many other image restoration tasks (dehazing, deraining, etc.), ...

Visual Coding vs Neural Networks

- Learning-based image compression
 - ✓ Non-linear transformations, entropy coding models, etc.
- Learning-based video compression
 - ✓ Optical flow, motion compensation, multi-frame fusion, etc.
- Models for typical image/video compression modules
 - ✓ Intra-prediction, in/out loop-filtering, entire encoder, etc.
- Learning-based point cloud compression
 - ✓ Geometry and attribute compression methods, etc.
- Learning-based light-field compression
 - ✓ Stereoscopic and multi-view representations, NeRF, etc.
- Neural networks models and activations compression
 - Enabling the efficient transmission of large models (or activations)

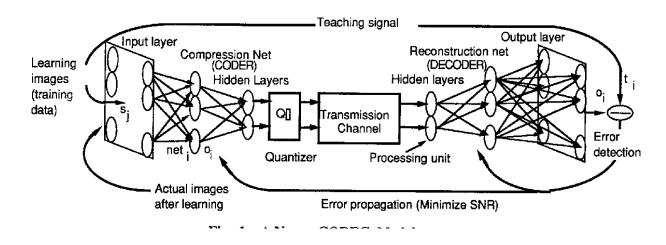


Image Compression with Neural Networks

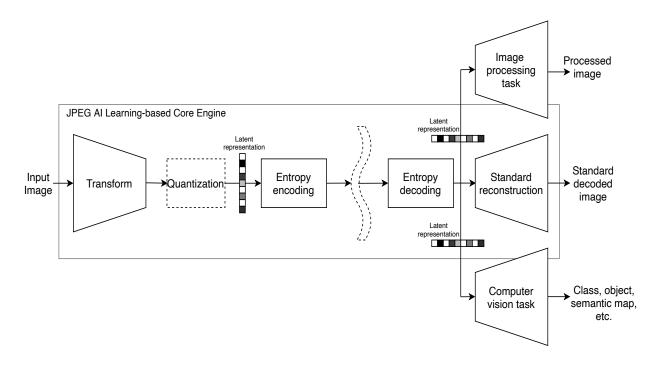
- Very recent and promising field
 - N. Sonehara, M. Kawato, S. Miyake, K. Nakane, Image data compression using neural network model, Proceedings of the International Joint Conference On Neural Networks, Washington DC, 1989, pp. 35–41.
 - ✓ G.L. Sicurana, G. Ramponi, Artificial neural network for image compression, Electron. Lett. 26, (7) (1990) 477–479.

As old as JPEG !!!

The JPEG Al Project

JPEG AI Project

- JPEG AI Project (ISO/IEC 6048) aims to develop and standardize learning-based image compression
 - Joint standardization effort between SC29/WG1 and ITU-T SG16
 - Call for Proposals has been issued and all submissions evaluated
 - Collaborative phase has started towards the definition of a verification model
- Many industry and academia involvement!


JPEG AI Scope

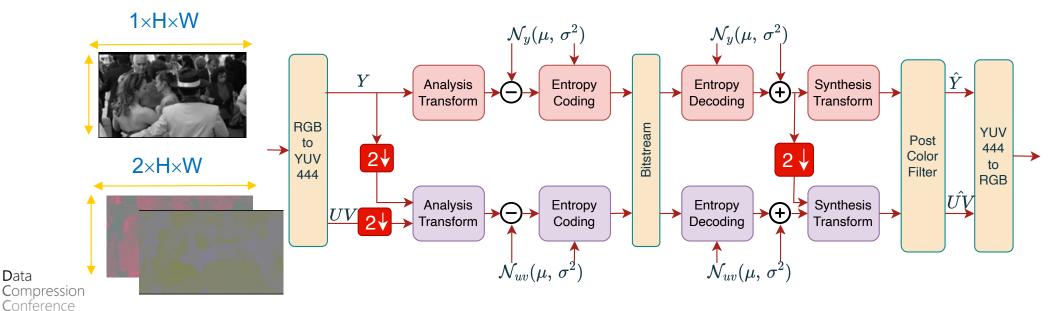
The JPEG AI scope is the creation of a learning-based image coding standard offering a single-stream, compact, compressed domain representation, targeting both human visualization, with significant compression efficiency improvement over image coding standards in common use at equivalent subjective quality, as well as effective performance for image processing and computer vision tasks, with the goal of supporting a royalty-free baseline

Image processing tasks	Computer vision tasks
Super-resolution	Image retrieval and classification
Low-light	Object detection and recognition
enhancement	
Color correction	semantic segmentation
Exposure	Event detection and action
compensation	recognition
Inpainting	Face detection and recognition

JPEG AI Framework

- Advantages for image processing and computer vision task:
 - ✓ Single-stream representation: same compressed stream is also useful for decoding
 - ✓ Energy efficient: reduces the resources needed to perform these tasks
 - ✓ *High accuracy:* allows performing these tasks using features extracted from the original instead of the lossy decoded images

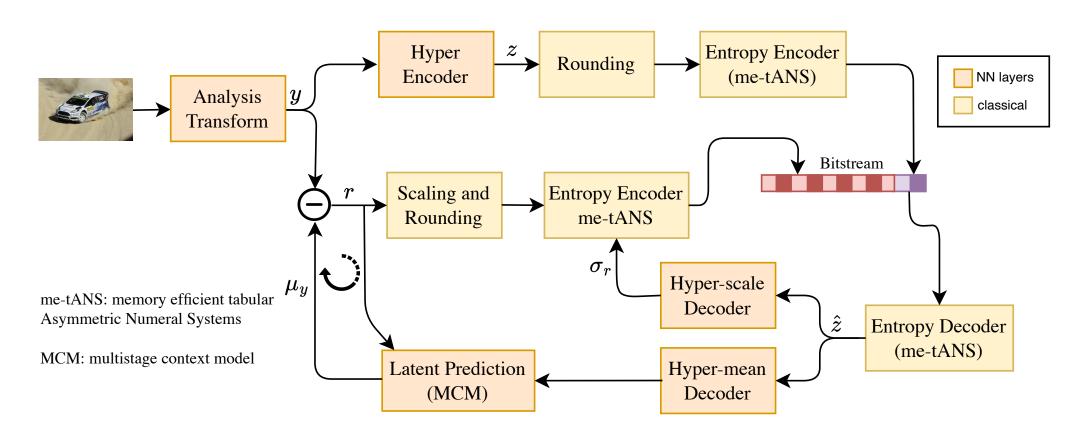
Application-driven Requirements


- High coding efficiency is important for many applications such as cloud storage or media distribution
- Content understanding is vital for many applications such as visual surveillance, autonomous vehicles, image collection management, etc
 - Objects may need to be recognized
 - Images may need to be classified for organization purposes
 - Actions or events may need to be recognized
- Content is not consumed by humans in the same way as the original reference in many applications such as in media distribution
 - ✓ Noise can be reduced.
 - Resolution can be increased
 - Colors can be corrected

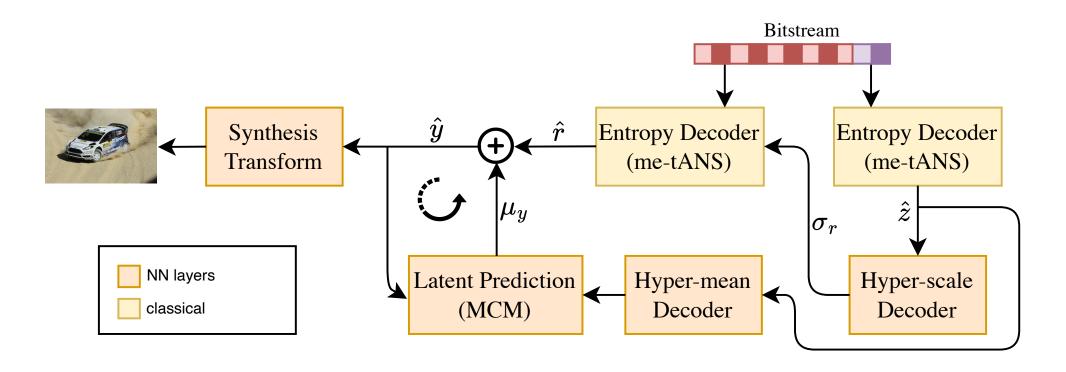
JPEG Al Verification Model

JPEG AI VM High Level Architecture

- New architecture never proposed before
 - ✓ Works with YUV colour space and supports 4:4:4 and 4:2:0
 - Exploits spatial correlation with the analysis and synthesis transforms
 - ✓ Probabilistic latent model is obtained from side information (hyper-prior)
- Two encoding pipelines are present, one for luma and another for chroma
 - ✓ Chroma pipeline encodes UV in half of the resolution of Y (and has less depth)
 - ✓ Independent pipelines using networks with same architecture, but different number of channels


JPEG AI Key Characteristics

- Probability table for entropy coding is modelled with $\mathbb{N}(0,\sigma)$ for every latent element
- Latents are predicted and only the residual is coded and transmitted
 - Exploits spatial correlation at the latent domain
- Entropy decoding is decoupled of latent prediction and reconstruction
 - ✓ Entropy decoding of a latent doesn't depend on previously decoded latents
- Hyper scale decoder
 - ✓ Provides estimation of the variance of the entropy coding model distribution
- Hyper "mean" decoder
 - ✓ Provides estimation of the mean (explicit prediction) of the latent

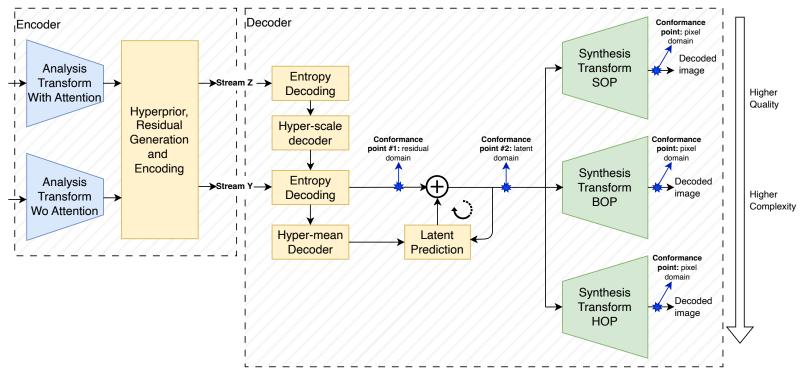


JPEG AI VM Encoder Architecture

JPEG AI VM Decoder Architecture

Addressing Complexity Issues

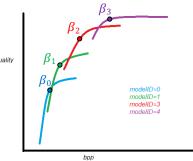
- Three operating points are supported:
 - CPU operating point targeting legacy devices
 - Base operating point targeting mobile devices
 - ✓ High operating point for more hardware-capable devices with powerful GPUs and no energy constraints
- □ Base operating point should provide 10–15% compression efficiency gains over VVC Intra with approx. 22 kMAC/px
- High operating point should provide 25-30% compression efficiency gains over VVC Intra with approx. 220 kMAC/pxl

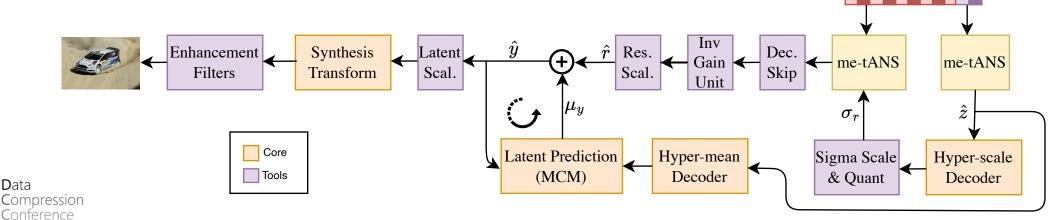


JPEG AI Multi-branch Decoding

Receiver can support just one decoder (operating point) to decode any stream

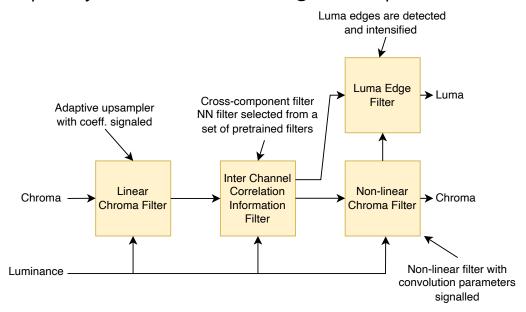
JPEG AI VM supports


2 Encoder × 3 Decoder = 6 possible combinations compatible to each other


Data

JPEG AI has a LOT of flag-enabled Tools

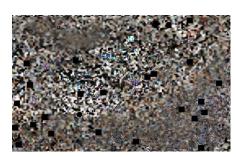
- Skip mode allows skip writing/parsing from the bitstream residual latent elements which can be identified by encoder and decoder to be zero
- Variable rate coding with Gain Units
 - Model parameters defined by ModelID
 - "Gain" factor for residual & variance defined by $\Delta \boldsymbol{\beta}$ (signalled)
- Residual and the standard deviation parameter scaling
- Enhancement filters increase mostly the chroma quality


Bitstream

Tool Example: Enhancement Filter Technologies

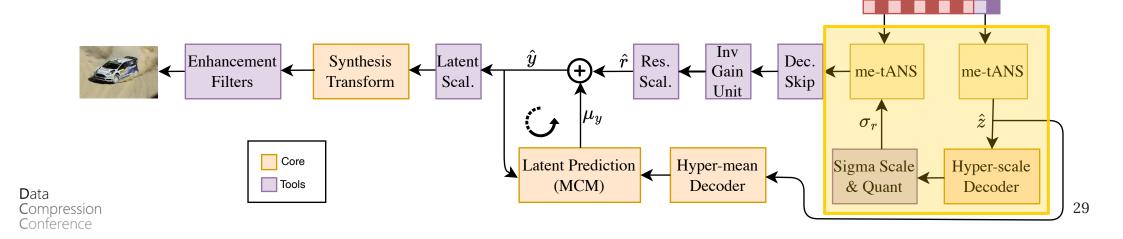
- Enhancement filters bring 26% gain in Chroma PSNR
- Linear chroma filter and non-linear chroma filter use signalled parameters and perform upsampling/color correction
- Inter channel correlation information filter provides enhancement of colour information exploiting correlation with luminance
- Luma edge filters adaptively enhances (scale) edges to improve decoded quality

Device Reproducibility


Due to the use of floating-point arithmetic and different orders for the operations the result depends on platform heavily.

Leads to wrong interpretation of the parsed symbols in arithmetic coder

How does effect look like?



Encoded and decoded on same device

Encoded and decoded on different devices

Bitstream

Hyper Scale Decoder

Bit-exact behavior in entropy part must be guaranteed!

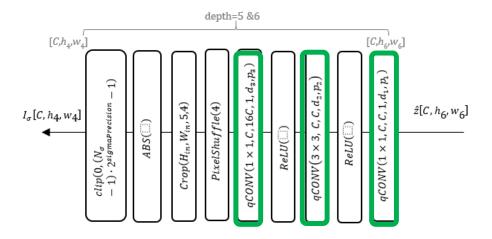
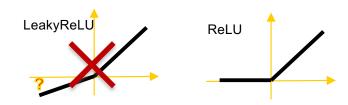



Figure 10.3-1 - Hyper Scale Decoder

Data Compression Conference convolution layer

CONV

 $out[c_{out}, i, j] = bias[c_{out}] + \sum_{c_{in}=0}^{c_{in}} weigth[c_{in}, c_{out}] * input[c_{in}, s \cdot i, s \cdot j];$ $i = 0, \dots, h_{out} - 1; j = 0, \dots, w_{out} - 1; c_{out} = 0, \dots, C_{out} - 1$

where " \star " is 2D **cross-correlation operator** with kernel size $K_{ver} \times K_{hor}$

....

quantized convolution layer

qCONV

... three-steps operation:

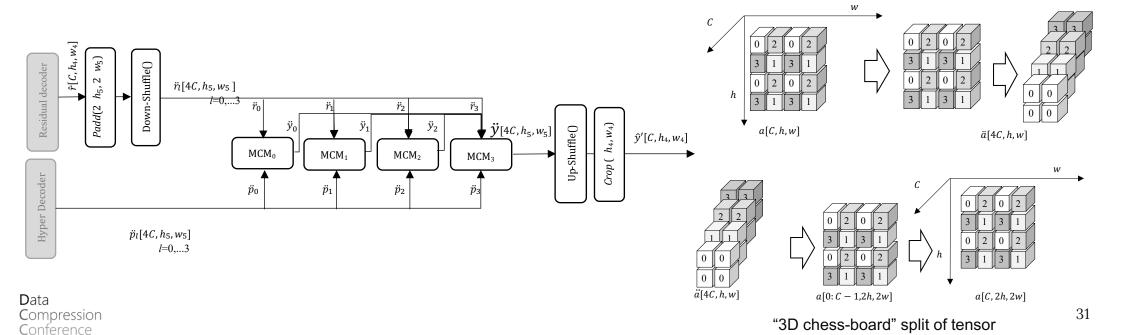
$$temp[c_{in}, i, j] = clip(-d, d - 1, input[c_{in}, i, j]),$$

$$i = 0, ..., h_{in} - 1; j = 0, ..., w_{in} - 1; c_{in} = 0, ..., C_{in} - 1;$$

$$R[c_{out}, i, j] = bias[c_{out}] + \sum_{c_{in}=0}^{C_{in}-1} weigth[c_{in}, c_{out}] * temp[c_{in}, s \cdot i, s \cdot j];$$

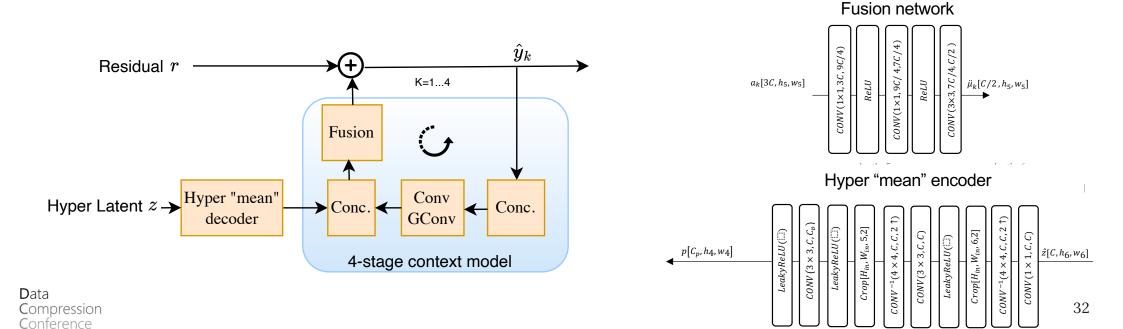
where " \star " is 2D **cross-correlation operator** with kernel size $K_{ver} \times K_{hor}$.

$$\begin{aligned} out[c_{out}, i, j] &= (R[c_{out}, i, j]) \gg p[c_{out}]; \\ i &= 0, ..., h_{out} - 1; j = 0, ..., w_{out} - 1; c_{out} = 0, ..., C_{out} - 1. \end{aligned}$$


The tensor weigth of shape $[C_{in}, C_{out}, K_{ver}, K_{hor}]$ contains learnable **8-bit integer** weights, the tensor bias of shape $[C_{out},]$ contains learnable **31-bit integer** biases. All parameters weigth and bias are part of learnable quantized model.

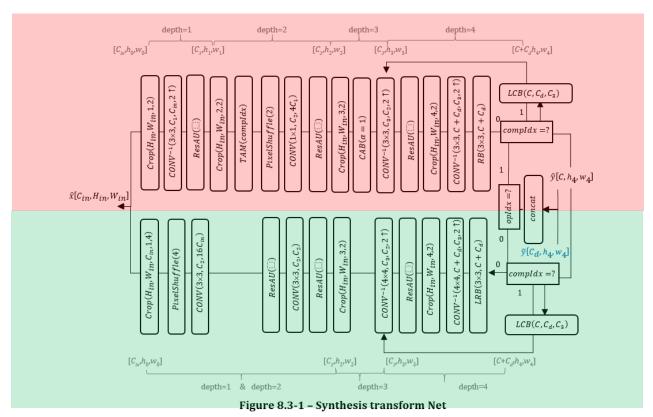
The combination of clipping value d, de-scaling shifts $p[c_{out}]$ and magnitude for the quantized model parameters allows control over bit depth of register $R[c_{out}, i, j]$ (guaranteed to be within **32** *bits*).

Spatial Prediction @ Latent Domain


- Aims to predict the mean of \tilde{y} using the explicit prediction and residual decoded data \checkmark 3D chess-board split of the tensor
- Significant complexity reduction (minimizes serial processing) in comparison to previous approaches such as wavefront parallelizable models with masked convolutions

Multistage (4-stage) Context Model

- Hyper-mean encoder provides an explicit prediction derived from the hyper latent tensor
- 4-stage context model: concatenates and process already reconstructed latent sample groups which are fused together with the explicit prediction of the hyper mean decoder



Synthesis Transform

High Operation Point ~180 kMAC/pxl

Base Operation Point ~20 kMAC/pxl

Network is deeper for primary component (Luma)

Data Compression Conference

Bring the Attention!

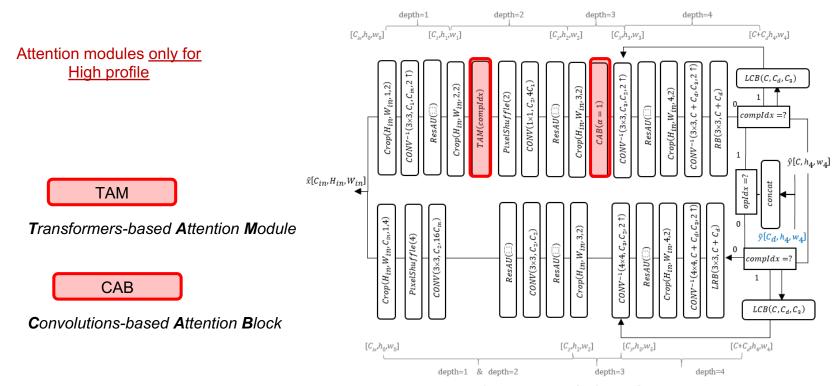
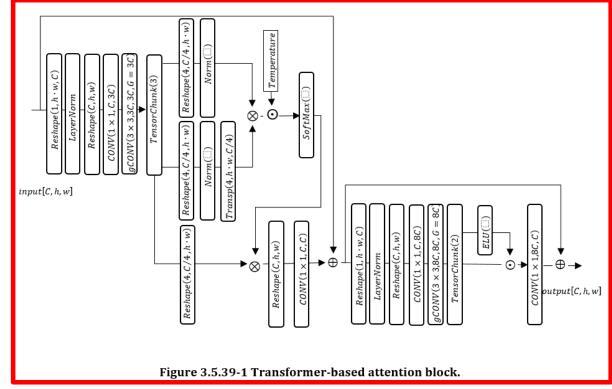


Figure 8.3-1 - Synthesis transform Net

Attention Blocks: Convolutional vs Transformer

Three branches to represent skip, feature and mask (to improve receptive field)

input[C,h,w]


output[C,h,w]

output[C,h,w]

output[C,h,w]

Figure 3.5.30-1 - Convolution-base attention block

Three branches to represent query, key and value Transposed-attention map A of size C×C is computed

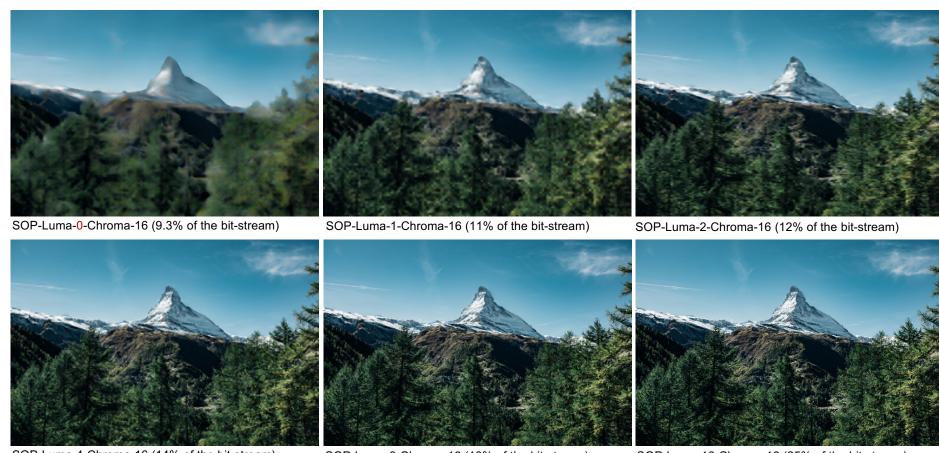
JPEG AI Region of Interest Decoding

The residual is multiplied by a gain tensor for local quality control Quality index map is predicted, coded and inserted into the codestream

JPEG AI VM3.4 - 0.12 bpp

JPEG AI VM3.4 + ROI coding - 0.10 bpp

Original image


ROI mask (white)

Allocating more bits on the ROI and fewer bits on the background

JPEG AI Progressive Decoding

Partial decode part of the 160 channels of residual can reduce the time used for decoding.

Data Compression Conference

Compression SOP-Luma-4-Chroma-16 (14% of the bit-stream)

SOP-Luma-8-Chroma-16 (18% of the bit-stream)

SOP-Luma-16-Chroma-16 (25% of the bit-stream)

Performance Evaluation

JPEG AI Dataset

400_8bit_sRGB

00011_TE_1512x2

00002_TE_2144x1 424_8bit_sRGB

00003_TE_1944x1 296_8bit_sRGB

00004_TE_1808x1 00005_TE_1336x8 352_8bit_sRGB 72_8bit_sRGB

00006_TE_1544x1 120_8bit_sRGB

00007_TE_1472x9 76_8bit_sRGB

00008_TE_1912x1 272_8bit_sRGB

00009_TE_1976x1 312_8bit_sRGB

00010_TE_1744x1 160 8bit sRGB

016 8bit sRGB 280_8bit_sRGB

00013_TE_3680x2 456 8bit sRGB

00021_TE_2192x1

00023_TE_2464x1 640_8bit_sRGB

024_8bit_sRGB

00025_TE_1984x1 320_8bit_sRGB

00026_TE_1784x1 296_8bit_sRGB

456_8bit_sRGB

00028_TE_800x12 00_8bit_sRGB

00029_TE_976x14 72_8bit_sRGB

8_8bit_sRGB

00031_TE_1752x1

120_8bit_sRGB

00033_TE_2120x1 608_8bit_sRGB

00034_TE_1072x9 28_8bit_sRGB

00035_TE_877x16 58_8bit_sRGB

00036_TE_998x16 75_8bit_sRGB

00037_TE_5616x3 744_8bit_sRGB

00038_TE_8160x6

00039_TE_5464x3 120_8bit_sRGB 640_8bit_sRGB

Training Set: 5000+ images Validation Set: 350+ images

00041_TE_3374x5 055_8bit_sRGB

004_8bit_sRGB

00043 TE 945x84

0_8bit_sRGB

00044_TE_1430x1 834_8bit_sRGB

00045_TE_2533x1 897_8bit_sRGB

00046_TE_2816x1 878_8bit_sRGB

00047_TE_2500x1 875_8bit_sRGB

00048_TE_2500x1 667_8bit_sRGB

00049_TE_5566x3 569_8bit_sRGB

652_8bit_sRGB

Data Compression Conference

JPEG AI Additional Datasets

36 synthetic images

11001_TE_2560x1 440 8bit sRGB

12002 TE 1920x1 016_8bit_sRGB

13002_TE_2000x2 496 8bit sRGB

14002_TE_1920x1 496_8bit_sRGB

11002_TE_1180x1 612_8bit_sRGB

12003_TE_644x46 2 8bit sRGB

13003_TE_6068x3 412_8bit_sRGB

14003_TE_624x90 8 8bit sRGB

11003_TE_1400x1 048_8bit_sRGB

12004_TE_1024x7

68 8bit sRGB

13004_TE_1072x1

500_8bit_sRGB

14004_TE_1304x1

940 8bit sRGB

11004_TE_2864x1 872_8bit_sRGB

12005_TE_1920x1 080_8bit_sRGB

12006 TE 1920x1 080_8bit_sRGB

13006_TE_3072x2 304_8bit_sRGB

14006_TE_3328x2

156 8bit sRGB

14005_TE_3000x3 000 8bit sRGB

13005_TE_2800x1

400_8bit_sRGB

11005_TE_1016x7 60_8bit_sRGB

12007_TE_2560x1 080_8bit_sRGB

11006_TE_2560x1

600_8bit_sRGB

13007_TE_1920x1 920_8bit_sRGB

14007_TE_1200x1 500_8bit_sRGB

11007_TE_1280x7 20_8bit_sRGB

14008_TE_3760x2

454 8bit sRGB

12008 TE 3840x2 12009 TE 2048x1 160_8bit_sRGB

13008_TE_2048x1 13009_TE_2048x2 148 8bit sRGB 048_8bit_sRGB

14009_TE_2016x1 512 8bit sRGB

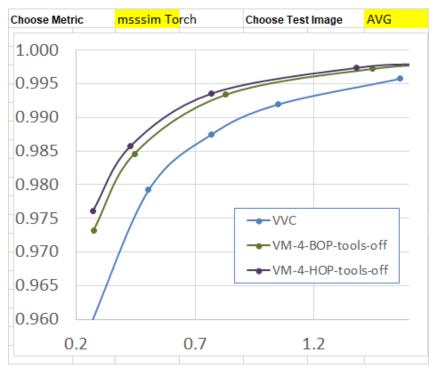
12001_TE_1848x1 11008_TE_1920x1 080 8bit sRGB 080 8bit sRGB

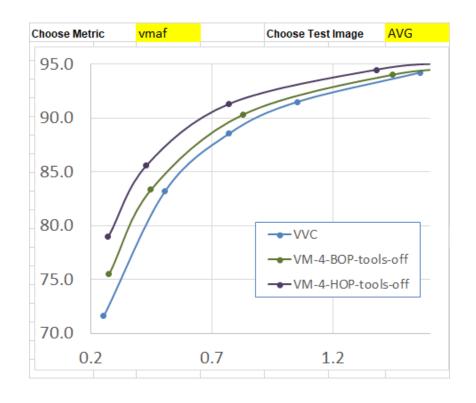
13001_TE_2000x1 128_8bit_sRGB

14001_TE_1024x1 024_8bit_sRGB

14010_TE_1764x2 572 8bit sRGB

12 HDR images





JPEG AI RD Performance

tools-off: only "off-line trained", no content adaptation, no encoder search,

Data Compression Conference

JPEG AI VM4 RD Performance

RVS – Residual and Variance Scale

Filters – Adaptive re-sampler, ICCI (cross-color filter),

LEF (luma edge filter) and non-linear chroma filter LSBS – Latent Scale Before Synthesis

CWG – Channel-Wise Gain

Base operating point!

	5 points BD-rate (0.06, 0.12, 0.25, 0.5, 0.75)									10%						
		BD rate vs	VVC							Max	Dec. complexity					c. complex
<u>Test</u>	AVG	msssim Torch	vif	fsim	nlpd	iw-ssim	vmaf	psnrHVS	Monotonicity	Bit Dev.	MAX kMAC/pxl	AVG kMAC/pxl	Time GPU, x	Model	ModelS	Time GPU
v4.4-tools-off-GPU	-10.6%	-28.6%	-1.2%	-13.0%	-9.8%	-24.7%	-0.7%	3.9%	TRUE	317%	22	22	0.10	2.93E+06	1.17E+07	0.001
v4.4-tools-on-GPU	-16.2%	-27.3%	1.8%	-28.6%	-13.4%	-24.7%	-26.4%	5.5%	TRUE	393%	29	26	0.18	3.38E+06	1.32E+07	0.002
v4.4-tools-off-GPU-LH	-11.4%	-29.3%	-2.0%	-13.8%	-10.6%	-25.3%	-1.6%	3.0%	TRUE	314%	0	#DIV/0!	#VALUE!	2.93E+06	1.17E+07	0.001
v4.4-only-RDLR	-12.4%	-30.6%	-3.1%	-14.5%	-11.3%	-26.0%	-3.4%	1.8%	TRUE	317%	22	22	0.10	2.93E+06	1.17E+07	0.001
v4.4-only-ResVarScale0	-13.6%	-29.1%	-1.5%	-19.6%	-13.2%	-25.4%	-8.6%	1.9%	TRUE	343%	22	22	0.12	2.93E+06	1.17E+07	0.001
v4.4-only-ResVarScale1	-14.2%	-28.6%	-0.2%	-22.5%	-14.4%	-25.1%	-10.5%	1.8%	FALSE	380%	22	22	0.12	2.93E+06	1.17E+07	0.001
v4.4-only-EnhancementFilters	-11.2%	-28.4%	-0.9%	-14.3%	-9.0%	-24.6%	-5.8%	4.7%	TRUE	318%	28	25	0.14	3.38E+06	1.32E+07	0.002
v4.4-only-LSBS	-11.5%	-28.7%	-1.6%	-12.1%	-9.4%	-24.7%	-8.4%	4.6%	TRUE	317%	22	22	0.11	2.93E+06	1.17E+07	0.001
v4.4-only-ECThread8	-10.6%	-28.6%	-1.2%	-13.0%	-9.8%	-24.7%	-0.7%	3.9%	TRUE	317%	22	22	0.10	2.93E+06	1.17E+07	0.001
v4.4-only-CWG	-12.9%	-28.9%	-0.7%	-20.9%	-12.0%	-25.6%	-5.6%	3.4%	TRUE	328%	22	22	0.10	2.93E+06	1.17E+07	0.001

High operating point!

			5		10%											
		BD rate vs	VVC							Max	Dec. complexity					c. comple:
		msssim								Bit	MAX	AVG	Time	Model	ModelS	Time
Test	AVG	Torch	vif	fsim	nlpd	iw-ssim	vmaf	psnrHVS	Monotonicity	Dev.	kMAC/pxl	kMAC/pxl	GPU, x	Model	Models	GPU
v4.4-tools-off-GPU	-25.2%	-38.7%	-16.3%	-26.6%	-24.1%	-35.9%	-22.8%	-11.7%	TRUE	368%	212	207	0.37	9.97E+06	3.99E+07	0.002
v4.4-tools-on-GPU	-28.6%	-36.4%	-13.4%	-38.1%	-25.6%	-34.6%	-43.0%	-9.0%	TRUE	445%	230	221	0.49	1.04E+07	4.14E+07	0.003
v4.4-tools-off-GPU-LH	-25.9%	-39.3%	-17.0%	-27.4%	-24.9%	-36.5%	-23.5%	-12.4%	TRUE	364%	0	#DIV/0!	#VALUE!	9.97E+06	3.99E+07	0.002
v4.4-only-RDLR	-25.7%	-39.5%	-17.2%	-26.8%	-24.4%	-36.3%	-23.3%	-12.3%	TRUE	368%	212	207	0.37	9.97E+06	3.99E+07	0.009
v4.4-only-ResVarScale0	-27.3%	-38.8%	-16.3%	-31.6%	-26.6%	-36.2%	-28.9%	-12.9%	TRUE	392%	212	207	0.38	9.97E+06	3.99E+07	0.002
v4.4-only-ResVarScale1	-27.6%	-38.3%	-15.4%	-32.4%	-27.3%	-35.9%	-30.5%	-13.1%	FALSE	435%	212	207	0.39	9.97E+06	3.99E+07	0.002
v4.4-only-EnhancementFilters	-25.6%	-38.4%	-16.0%	-28.6%	-23.4%	-35.7%	-26.7%	-10.7%	TRUE	369%	218	209	0.40	1.04E+07	4.14E+07	0.003
v4.4-only-LSBS	-25.7%	-38.7%	-16.6%	-25.8%	-23.8%	-35.9%	-28.4%	-11.0%	TRUE	368%	212	207	0.38	9.97E+06	3.99E+07	0.002
v4.4-only-ECThread8	-25.2%	-38.7%	-16.3%	-26.6%	-24.1%	-35.9%	-22.8%	-11.7%	TRUE	368%	212	207	0.36	9.97E+06	3.99E+07	0.002
v4.4-only-CWG	-26.9%	-38.4%	-15.7%	-34.2%	-25.5%	-36.1%	-27.0%	-11.7%	TRUE	376%	212	207	0.35	9.97E+06	3.99E+07	0.002

Performance with Multi-branch Decoding

Only differ in the analysis and synthesis transforms

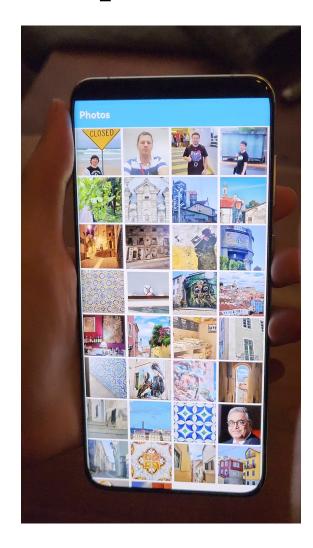
- Enc0 Synthesis Transform without attention
- Enc1 Synthesis Transform with attention
- SOP Simple operating point
- BOP Base operating point
- HOP High operating point

			5 p								
		BD rate v	s VVC-012	2-025-050-0	75-100				Dec. cor	nplexity	Enc. Comp.
		msssim							kMAC/px	Time	
<u>Test</u>	AVG	Torch	vif	fsim	nlpd	iw-ssim	vmaf	psnrHVS		GPU, x	Time GPU
v5.1-Enc0-SOPDec-tools-off-GPU	-12.4%	-31%	2.8%	-15%	-13%	-27%	-5%	0.9%	8	0.1	0.0004
v5.1-Enc0-SOPDec-tools-on-GPU	-17.5%	-32%	4%	-24%	-15%	-28%	-28%	0.4%	13	0.2	0.0017
v5.1-Enc0-BOPDec-tools-off-GPU	-16.3%	-33%	-2.2%	-20%	-16%	-29%	-11%	-3%	22	0.1	0.0004
v5.1-Enc0-BOPDec-tools-on-GPU	-21.0%	-33%	-1.2%	-28%	-18%	-30%	-32%	-4%	26	0.2	0.0017
v5.1-Enc1-HOPDec-tools-off-GPU	-24.0%	-38%	-12%	-30%	-22%	-34%	-21%	-11%	214	0.4	0.0010
v5.1-Enc1-HOPDec-tools-on-GPU	-28.0%	-38%	-11%	-38%	-24%	-34%	-40%	-11%	216	0.4	0.0023

For the CPU platform, the decoder complexity is 1.6x/3.1x times higher compared to VVC Intra (reference implementation) for the simplest/base operating point.



JPEG AI Decoder on Smartphones


Main targets:

- Demonstrate to the world that JPEG AI can fly on smartphone right now even without dedicated chip
- Identify JPEG AI design issues preventing deployment on mobile platform as early as possible
- Verify device interoperability of IPEG AI standard

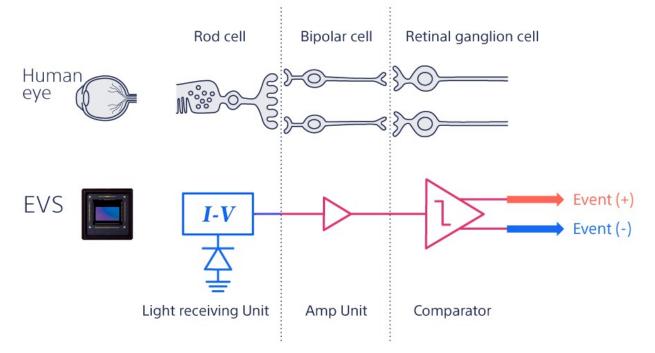
- Configuration: JPEG AI CE6.1/VM3.4 base operating point
- <u>Device #1</u>: Huawei Mate50 Pro with Qualcomm Snapdragon 8+ Gen1
- <u>Device #2:</u> iPhone 14/15 Pro Max, 1K patch images

JPEG AI Smartphone Demos

Huawei Mate50 Pro

Iphone 14 Pro Max

Data Compression Conference


Going Forward ...

Biological Inspired Acquisition

Deep learning already disrupted compression! What about sensing?

Differential visual sampling model in which time-domain changes in the incoming light intensity are pixel-wise detected and compared to a threshold, triggering an event if it exceeds the threshold.

Event-based or Neurmorphic Imaging

- Event cameras each sensor pixel is in charge of controlling the light acquisition process in an asynchronous and independent way
 - According to the dynamics of the visual scene
 - ✓ Producing a variable data rate output
- Relevant advantages:
 - ✓ High temporal resolution
 - ✓ Very high dynamic range
 - ✓ Low latency
 - ✓ Low power consumption
 - ✓ No fixed frame rate

New Exploration Activity!

The scope of JPEG XE is the creation and development of a standard to represent Events in an efficient way allowing interoperability between sensing, storage, and processing, targeting machine vision applications.

JPEG AI Next Steps

- Profile/level and conformance discussion has started and is ongoing
- Version 1 addresses several (but not all) JPEG AI 'core' and 'desirable' requirements with emphasis on compression efficiency for standard reconstruction
- ☐ Version 2 will address/include:
 - ✓ JPEG AI requirements not yet addressed in version 1, e.g. related to processing and computer vision tasks
 - ✓ Significantly improved solutions for JPEG AI requirements already addressed in Version 1, e.g. compression efficiency

Part	Title
1	JPEG AI: Core Coding System
2	JPEG AI: Profiling
3	JPEG AI: Reference Software
4	JPEG AI: Conformance
5	JPEG AI: File Format

Part	Title	WD	CD	DIS	FDIS	IS
1	JPEG AI: Core Coding System	23/01	23/10	24/04	-	24/10
2	JPEG AI: Profiling	24/01	24/04	24/07	=	25/01
3	JPEG AI: Reference Software		24/07	24/10	=	25/04
4	JPEG AI: Conformance		24/07	24/10	-	25/04
5	JPEG AI: File Format		24/07	24/10	=	25/04

Final Remarks

- The first learning-based image compression international standard is under active development!
 - Significant higher compression efficiency compared to the best performing conventional image coding solutions, notably H.266/VVC and H.265/HEVC
 - ✓ Can be efficiently deployed in resource-constrained mobile devices
 - ✓ Much less encoding complexity, online encoder search is now done offline
- ☐ Main challenge is to have a multi-purpose bitstream (THE visual language) that is good for a multitude of visual tasks!
 - ✓ Not only image compression but for content understanding and image enhancement!
- "Artificial Intelligence" can be brought to the sensing process to have an even more rich visual data representation!

Thank you for your hard work and dedication!

